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Abstract

Gauss-Seidel is an iterative computation used for solving a set of simultaneous linear equations,
A~u = ~f . If the matrix A uses a sparse matrix representation, storing only nonzeros, then the data
dependences in the computation arise from A’s nonzero structure. We use this structure to schedule the
computation at runtime using a technique called full sparse tiling. The sparse tiled computation exhibits
better data locality and therefore improved performance. This paper gives a complete proof that a serial
schedule for full sparse tiled Gauss-Seidel generates results equivalent to those that a typical Gauss-Seidel
computation produces. We also provide implementation and correctness details for full sparse tiling with
reduced worst-case complexity.

1 Introduction

Gauss-Seidel is an iterative method which solves a set of simultaneous linear equations, A~u = ~f . Iterative
methods solve for the unknown vector ~u by iteratively traversing the system of equations, converging toward
a solution. Pseudo-code for Gauss-Seidel is shown in (1) with uv representing an element in the vector ~u,
fv an element in the vector ~f , and avw the element at row v and column w in the matrix A. We refer to
the iterator, iter, of the outermost loop as the convergence iterator. The v loop iterates over the unknowns
and corresponding rows of matrix A. The w loop, which is implicit in the summations, iterates over the
columns of matrix A. Upon the completion of each convergence iteration a new value is generated for all the
unknowns in ~u.

for iter = 1, 2, ..., T
for v = 0, 1, ..., (R− 1)

uv = (1/avv)(fv −
∑v−1

w=0 avwuw −
∑(R−1)

w=v+1 avwuw) (1)

If the matrix A is sparse then a compressed format is used to store only the nonzeros in the matrix. Since
sparse matrices in typical applications contain less than 1% of the possible entries, the use of compressed
formats results in a large storage savings. The loops in computations involving sparse matrices are modified
so that the computation visits only the matrix elements actually stored. In (2), we show how the pseudocode
for Gauss-Seidel changes to iterate only over the nonzeros within a row of the matrix. Computation only
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Figure 1: Example Matrix Graph

occurs when there are nonzero matrix entries, therefore compressed formats result in computation savings
as well.

for iter = 1, 2, ..., T
for v = 0, 1, ..., (R− 1)

uv = fv

for all w where avw 6= 0 and w 6= v
uv = uv − avwuw

uv = uv/avv

(2)

The nonzero structure in a sparse matrix can be visualized with a matrix graph G(V,E). For each iteration,
v, and corresponding unknown, uv, there is a node in the matrix graph, v ∈ V . There is an directed edge
<v, w>∈ E if avw 6= 0 or awv 6= 0. Figure 1 shows an example matrix graph with the direction of the edges
elided.

The matrix graph for the sparse matrix A induces structure on the Gauss-Seidel iteration space. The iteration
space in figure 2 contains three convergence iterations, with an instance of the matrix graph appearing at each
convergence iteration. Each iteration point1 , <iter, v>, represents the computations for uv at convergence
iteration iter as specified in (1). The arrows represent data dependences2 between the iteration points. In
Gauss-Seidel, each computation for uv uses the most recently calculated values of the neighboring unknowns
in the matrix graph, therefore some data dependences come from iteration points in the same convergence
iteration, iter, and some data dependences come from points in the previous convergence iteration, iter− 1.

The typical schedule for Gauss-Seidel, as shown in (2), is to complete all the computation for each con-
vergence iteration iter before doing the next convergence iteration. Sparse tiling techniques reschedule the
computation so that subsets of unknowns are computed across multiple convergence iterations. Figure 3

1We use the term iteration point for points in the iteration space graph and node for points in the matrix graph.
2Only the dependences for one matrix node are shown for clarity.
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iter

Figure 2: Gauss-Seidel iteration space graph for 3 convergence iterations.

exhibits a full sparse tiling of the Gauss-Seidel iteration space in figure 2. The code is transformed into an
inspector/executor framework. The inspector generates sparse tiles the iteration space based on the matrix
graph and creates a new schedule based on the sparse tiled computation. The executor is the original com-
putation code transformed so that it uses the schedule generated by the inspector. Sparse tiled Gauss-Seidel
results in improved data locality [21]. It is possible to determine a parallel schedule for the full sparse tiled
computation [22], but this paper focuses on the legality of a serial schedule.

Section 2 will describe how Gauss-Seidel for the compressed sparse row (CSR) format is transformed at
compile time to use a run-time generated sparse tiling schedule. It also includes an in-depth analysis of the
data dependences for Gauss-Seidel written for CSR. Theorem 1 specifies the constraints the sparse tiling
function must satisfy so that a serial tile-by-tile schedule generates results equivalent to the typical Gauss-
Seidel schedule. The construction of the sparse tiling function is detailed in section 3. Finally, in section 3.6
the properties of the tiling function generated as described in section 3 are used to show that the constraints
in theorem 1 are satisfied; therefore, full sparse tiled Gauss-Seidel for CSR generates equivalent results to
typical Gauss-Seidel for CSR when they both start with the same data ordering function.

2 Transforming the Code

This paper proves that the transformed code shown in figure 6 generates an unknown array u′, equivalent to
the results from the Gauss-Seidel code shown in figure 5 when both versions of the code use the same data
ordering function.To prove the correctness of the sparse tiled Gauss-Seidel in figure 6, we first determine the
data dependence relations for the Gauss-Seidel pseudocode shown in figure 5. We then specify the compile-
time mappings [14] which transform Gauss-Seidel for CSR to sparse tiled Gauss-Seidel for CSR. Finally, we
determine the constraints which the tiling function and data ordering generated by sparse tiling techniques
must satisfy to make the transformation legal. A transformation is legal if all the data dependences are
satisfied in the transformed iteration space.

The original order, v = 0, 1, ..., (R − 1), given to the unknowns and corresponding matrix rows is often
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Figure 3: Full sparse tiled Gauss-Seidel iteration space

arbitrary and may be changed without affecting the convergence properties of Gauss-Seidel [26]. Therefore, if
the unknowns are mapped to another order before performing Gauss-Seidel, the final result will be somewhat
different, but the Gauss-Seidel convergence properties still hold. Since full sparse tiling (and cache blocking)
perform an initial reordering of the unknowns, to prove correctness of sparse tiled Gauss-Seidel we will
compare the result of full sparse tiled Gauss-Seidel with the generated reordering, i = σ(v) where i is the
loop iterator in Figures 5 and 6, to that of typical Gauss-Seidel using the same initial ordering. Therefore,
in Figures 5 and 6, assume that the original matrix A, unknown vector ~u, and right-hand side ~f have been
reordered using the reordering function i = σ(v) such that A′

σ(v)σ(w) = Avw, u′σ(v) = uv, and f ′σ(v) = fv.

Figure 5 gives detailed pseudocode for Gauss-Seidel written for the Compresses Sparse Row (CSR) matrix
format, which stores the nonzeros in a sparse matrix A′ by row using the ia, ja, and a arrays (see Figure 4).
The values in the ia array index into the ja and a arrays indicating where the column identities and the
nonzero matrix elements start for row i. The vectors ~u′ and ~f ′ are represented with arrays u′ and f ′.

At runtime, sparse tiling techniques generate a data ordering function σ and a tiling function, θ(iter, v) :
{1, .., T} x V → {0, ..., (k − 1)}. The tiling function assigns iteration points, < iter, v >, from the original
iteration space to tiles. From this tiling function a schedule function is created. The schedule function,
sched(tileID, iter) : {0, ..., (k − 1)} x {1, ..., T} → 2{0,...,(R−1)}, specifies for each tile and convergence
iteration which subset of the reordered unknowns must be updated. The transformed code shown in figure 6
does a tile-by-tile execution of the iteration points by using the schedule function, which is defined as
sched(tileID, iter) = {σ(v) | θ(iter, v) = tileID}.

2.1 Data Dependence Relations in Gauss-Seidel for CSR

Each statement exists within an iteration space defined by the surrounding loops. For example, statement
1 in Figure 5 lies within the iteration space {[iter, i] | (1 ≤ iter ≤ T ) and (0 ≤ i < R)}. Data dependences
indicate when an instance of a statement must execute before the instance of another statement or before
another instance of the same statement due to memory-based data dependences. Data dependence relations
are sets of mappings between statement instances [14]. For example, since statement 1 in Figure 5 writes to
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j  =  ja[ ia[i]+1 ]
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a
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4 97 3 1 . . . A[i,j]=58 . . .
a[ia[i]]

row 0 row 1

Figure 4: Compressed sparse row (CSR) format

GaussSeidelCSR(A′(ia,ja,a),u′,f ′)
for iter = 1, T do

for i = 0, (R− 1) do
1: u′[i] = f ′[i]

for p=ia[i], ia[i + 1]−1 do
if ( ja[p] 6= i ) then

2: u′[i] = u′[i] - a[p] * u′[ja[p]]
else

3: diag[i] = a[p]
endif

endfor
4: u′[i] = u′[i]/diag[i]

endfor
endfor

Figure 5: Gauss-Seidel for Compressed Sparse Row (CSR)

the same memory location at each convergence iterations iter, there is a memory-based dependence which
can be specified with the following data dependence relation.

{[iter1, i]→ [iter2, i] | 1 ≤ iter1 < iter2 ≤ T and 0 ≤ i < R}

By using uninterpreted function symbols, it is possible to represent the data dependence relations between
indirect memory references as well. The values in the index arrays ia and ja are not known until runtime,
therefore we represent those values abstractly with the uninterpreted function symbols ia() and ja(). For
example, the dependence relation between the write of u′[i] in statement 1 of Figure 5 and the read of
u′[ja[p]] in statement 3 is as follows.

{[iter1, i]→ [iter2, i, p] | 1 ≤ iter1 ≤ iter2 ≤ T and 0 ≤ i < R and ia(i) ≤ p < ia(i + 1) and i = ja(p)}

In order to perform Gauss-Seidel on the matrix A′ there must be nonzero values on the diagonals. Therefore,
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GaussSeidelCSR ST(A′(ia,ja,a),u′,f ′,sched,k)
for tileID = 0, (k − 1) do

for iter = 1, T do
for i ∈ sched(tileID, iter)

1: u′[i] = f ′[i]
for p=ia[i],ia[i + 1]−1 do

if ( ja[p] 6= i ) then
2: u′[i] = u′[i] - a[p] * u′[ja[p]]

else
3: diag[i] = a[p]

endif
endfor

4: u′[i] = u′[i]/diag[i]
endfor

endfor
endfor

Figure 6: Serial execution of sparse tiled Gauss-Seidel for Compressed Sparse Row (CSR)

we assume that the array variable diag in Figure 5 is assigned at least once for each iteration of the i loop.
Since it is assigned and then used, it will not affect the legality of reordering any of the loops.

Tables 2.2 and 2.2 list all of the data dependence relations for the code in figure 5.

2.2 Compile-time Transformation Mappings

The sparse tiled code in Figure 6 executes points in the iteration space {[iter, i] | (1 ≤ iter ≤ T ) and (0 ≤ i <
R)} in a tile-by-tile fashion. The following integer space mappings[14] describe the code transformation from
the code in Figure 5 to that in Figure 6. Transformation mapping Ms maps statement s from its original
iteration space to a unified iteration space.

M1 = {[iter, i] → [θ(iter, σ−1(i)), iter, i, 1, 1, 1]} (3)
M2 = {[iter, i, p] → [θ(iter, σ−1(i)), iter, i, 2, p, 1]} (4)
M3 = {[iter, i, p] → [θ(iter, σ−1(i)), iter, i, 2, p, 2} (5)

M4 = {[iter, i] → [θ(iter, σ−1(i)), iter, i, 3, 1, 1]} (6)

The unified iteration space will be executed in lexicographic order. Lexicographical order on integer tuples
may be defined as follows [13]:

(x1, ..., xn) ≺ (y1, ..., yn)⇔ ∃m : (∀i : 1 ≤ i < m⇒ xi = yi) ∧ (xm < ym)

Therefore, according to the transformation mappings M1, M2, M3, and M4, the unified iteration space is
executed by tile, by convergence iteration, and then by the order specified with the σ function since i = σ(v).
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ID Ref 1 Ref 2 Data dependence relation
D1 1: u′[i] 1: u′[i] {[iter1, i]→ [iter2, i] | 1 ≤ iter1 < iter2 ≤ T and 0 ≤ i < R}
D2 1: u′[i] 2: u′[i] (read) {[iter1, i]→ [iter2, i, p] | 1 ≤ iter1 ≤ iter2 ≤ T and 0 ≤ i < R

and ia(i) ≤ p < ia(i + 1) and i 6= ja(p)}
D3 1: u′[i] 2: u′[i] (write) same as dependence 2
D4 1: u′[i] 2: u′[ja[p]] {[iter, i1]→ [iter, i2, p] | 1 ≤ iter ≤ T and 0 ≤ i1 < i2 < R

and ia(i2) ≤ p < ia(i2 + 1) and i1 = ja(p)}
union
{[iter1, i1]→ [iter2, i2, p] | 1 ≤ iter1 < iter2 ≤ T and 0 ≤ i1, i2 < R

and i1 6= i2 and ia(i2) ≤ p < ia(i2 + 1) and i1 = ja(p)}
D5 1: u′[i] 3: u′[ja[p]] {[iter1, i]→ [iter2, i, p] | 1 ≤ iter1 ≤ iter2 ≤ T and 0 ≤ i < R

and ia(i) ≤ p < ia(i + 1) and i = ja(p)}
D6 1: u′[i] 4: u′[i] (read) {[iter1, i]→ [iter2, i] | 1 ≤ iter1 ≤ iter2 ≤ T and 0 ≤ i < R}
D7 1: u′[i] 4: u′[i] (write) same as dependence 6
D8 2: u′[i] (read) 1: u′[i] (read) read-read dependence
D9 2: u′[i] (read) 2: u′[i] (read) read-read dependence
D10 2: u′[i] (read) 2: u′[i] (write) {[iter, i, p1]→ [iter, i, p2] | 1 ≤ iter ≤ T and 0 ≤ i < R and p1 ≤ p2

and ia(i) ≤ p1, p2 < ia(i + 1) and i 6= ja(p1) and i 6= ja(p2)}
union
{[iter1, i, p1]→ [iter2, i, p2] | 1 ≤ iter1 < iter2 ≤ T and 0 ≤ i < R

and ia(i) ≤ p1, p2 < ia(i + 1) and i 6= ja(p1) and i 6= ja(p2)}
D11 2: u′[i] (read) 2: u′[ja[p]] read-read dependence
D12 2: u′[i] (read) 3: u′[ja[p]] read-read dependence
D13 2: u′[i] (read) 4: u′[i] (read) read-read dependence
D14 2: u′[i] (read) 4: u′[i] (write) {[iter1, i, p]→ [iter2, i] | 1 ≤ iter1 ≤ iter2 ≤ T and 0 ≤ i < R

and ia(i) ≤ p < ia(i + 1) and i 6= ja(p)}
D15 2: u′[i] (write) 1: u′[i] (read) {[iter1, i, p]→ [iter2, i] | 1 ≤ iter1 < iter2 ≤ T and 0 ≤ i < R

and ia(i) ≤ p < ia(i + 1) and i 6= ja(p)}
D16 2: u′[i] (write) 2: u′[i] (read) {[iter, i, p1]→ [iter, i, p2] | 1 ≤ iter ≤ T and 0 ≤ i < R and p1 < p2

and ia(i) ≤ p1, p2 < ia(i + 1) and i 6= ja(p1) and i 6= ja(p2)}
union
{[iter1, i, p1]→ [iter2, i, p2] | 1 ≤ iter1 < iter2 ≤ T and 0 ≤ i < R

and ia(i) ≤ p1, p2 < ia(i + 1) and i 6= ja(p1) and i 6= ja(p2)}
D17 2: u′[i] (write) 2: u′[i] (write) same as dependence 16
D18 2: u′[i] (write) 2: u′[ja[p]] {[iter, i1, p1]→ [iter, i2, p2] | 1 ≤ iter ≤ T and 0 ≤ i1 < i2 < R

and ia(i1) ≤ p1 < ia(i1 + 1) and i1 6= ja(p1)
and ia(i2) ≤ p2 < ia(i2 + 1) and i2 6= ja(p2) and i1 = ja(p2)}

union
{[iter1, i1, p1]→ [iter2, i2, p2] | 1 ≤ iter1 < iter2 ≤ T and 0 ≤ i1, i2 < R

and ia(i1) ≤ p1 < ia(i1 + 1) and i1 6= ja(p1)
and ia(i2) ≤ p2 < ia(i2 + 1) and i2 6= ja(p2) and i1 = ja(p2)}

D19 2: u′[i] (write) 3: u′[ja[p]] {[iter, i, p1]→ [iter, i, p2] | 1 ≤ iter ≤ T and 0 ≤ i < R
and ia(i) ≤ p1 < p2 < ia(i + 1) and i 6= ja(p1) and i = ja(p2)}

union
{[iter1, i, p1]→ [iter2, i, p2] | 1 ≤ iter1 < iter2 ≤ T and 0 ≤ i < R

and ia(i) ≤ p1, p2 < ia(i + 1) and i 6= ja(p1) and i = ja(p2)}
D20 2: u′[i] (write) 4: u′[i] (read) same as dependence 14
D21 2: u′[i] (write) 4: u′[i] (write) same as dependence 14
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ID Ref 1 Ref 2 Data dependence relation
D22 2: u′[ja[p]] 1: u′[i] {[iter, i1, p]→ [iter, i2] | 1 ≤ iter ≤ T and 0 ≤ i1 < i2 < R

and ia(i1) ≤ p < ia(i1 + 1) and i1 6= ja(p) and ja(p) = i2}
union
{[iter1, i1, p]→ [iter2, i2] | 1 ≤ iter1 < iter2 ≤ T and 0 ≤ i1, i2 < R

and ia(i1) ≤ p < ia(i1 + 1) and i1 6= ja(p) and ja(p) = i2}
D23 2: u′[ja[p]] 2: u′[i] (read) read-read dependence
D24 2: u′[ja[p]] 2: u′[i] (write) {[iter, i1, p1]→ [iter, i2, p2] | 1 ≤ iter ≤ T and 0 ≤ i1 < i2 < R

and ia(i1) ≤ p1 < ia(i1 + 1) and i1 6= ja(p1)
and ia(i2) ≤ p2 < ia(i2 + 1) and i2 6= ja(p2) and ja(p1) = i2}

union
{[iter1, i1, p1]→ [iter2, i2, p2] | 1 ≤ iter1 < iter2 ≤ T and 0 ≤ i1, i2 < R

and ia(i1) ≤ p1 < ia(i1 + 1) and i1 6= ja(p1)
and ia(i2) ≤ p2 < ia(i2 + 1) and i2 6= ja(p2) and ja(p1) = i2}

D25 2: u′[ja[p]] 2: u′[ja[p]] read-read dependence
D26 2: u′[ja[p]] 3: u′[ja[p]] read-read dependence
D27 2: u′[ja[p]] 4: u′[i] (read) read-read dependence
D28 2: u′[ja[p]] 4: u′[i] (write) same as dependence 22
D29 3: u′[ja[p]] 1: u′[i] {[iter1, i, p]→ [iter2, i] | 1 ≤ iter1 < iter2 ≤ T and 0 ≤ i < R

and ia(i) ≤ p < ia(i + 1) and i = ja(p)}
D30 3: u′[ja[p]] 2: u′[i] (read) read-read dependence
D31 3: u′[ja[p]] 2: u′[i] (write) {[iter, i, p1]→ [iter, i, p2] | 1 ≤ iter ≤ T and 0 ≤ i < R

and ia(i) ≤ p1 < p2 < ia(i + 1) and i 6= ja(p2) and ja(p1) = i}
union
{[iter1, i, p1]→ [iter2, i, p2] | 1 ≤ iter1 < iter2 ≤ T and 0 ≤ i < R

and ia(i) ≤ p1, p2 < ia(i + 1) and i 6= ja(p2) and ja(p1) = i}
D32 3: u′[ja[p]] 2: u′[ja[p]] read-read dependence
D33 3: u′[ja[p]] 3: u′[ja[p]] read-read dependence
D34 3: u′[ja[p]] 4: u′[i] (read) read-read dependence
D35 3: u′[ja[p]] 4: u′[i] (write) {[iter1, i, p]→ [iter2, i] | 1 ≤ iter1 ≤ iter2 ≤ T and 0 ≤ i < R

and ia(i) ≤ p < ia(i + 1) and i = ja(p)}
D36 4: u′[i] (read) 1: u′[i] same as dependence 1
D37 4: u′[i] (read) 2: u′[i] (read) read-read dependence
D38 4: u′[i] (read) 2: u′[i] (write) {[iter1, i]→ [iter2, i, p] | 1 ≤ iter1 < iter2 ≤ T and 0 ≤ i < R

and ia(i) ≤ p < ia(i + 1) and i 6= ja(p)}
D39 4: u′[i] (read) 2: u′[ja[p]] read-read dependence
D40 4: u′[i] (read) 3: u′[ja[p]] read-read dependence
D41 4: u′[i] (read) 4: u′[i] (read) read-read dependence
D42 4: u′[i] (read) 4: u′[i] (write) same as dependence 6
D43 4: u′[i] (write) 1: u′[i] same as dependence 1
D44 4: u′[i] (write) 2: u′[i] (read) same as dependence 38
D45 4: u′[i] (write) 2: u′[i] (write) same as dependence 38
D46 4: u′[i] (write) 2: u′[ja[p]] same as dependence 4
D47 4: u′[i] (write) 3: u′[ja[p]] {[iter1, i]→ [iter2, i, p] | 1 ≤ iter1 < iter2 ≤ T and 0 ≤ i < R

and ia(i) ≤ p < ia(i + 1) and i = ja(p)}
D48 4: u′[i] (write) 4: u′[i] (read) same as dependence 1
D49 4: u′[i] (write) 4: u′[i] (write) same as dependence 1

8



2.3 Constraints on the Tiling Function Due to Data Dependences

In this section we use the data dependence relations for the code in Figure 5 and the transformation mappings
which transform the code in Figure 5 to the code in Figure 6 to derive the necessary constraints on the tiling
function θ and reordering function σ. The legality of transformation mappings are verified by applying the
transformation mappings to the statements involved in each data dependence relation and verifying that the
data dependence remains satisfied. If there is a dependence between iteration ~x of statement s and iteration
~y of statement q then the code transformation mappings must satisfy that dependence [14]. Specifically the
following constraints must be satisfied,

∀~x, ~y, s, q, R, T : ~x→ ~y ∈ dsq ⇒Ms(~x) ≺Mq(~y)

where R and T are the symbolic constants in Gauss-Seidel for CSR, and ≺ is the lexicographic ordering
operator.

For example, the dependences between statement 1 and itself are as follows.

d11 = {[iter1, i]→ [iter2, i] | (1 ≤ iter1 < iter2 ≤ T ) ∧ (0 ≤ i < R)}

Applying M1 to both sides of the data dependence relation results in the following constraint.

∀ iter1, iter2, i : (1 ≤ iter1 < iter2 ≤ T ) ∧ (0 ≤ i < R)
⇒ [θ(iter1, σ

−1(i)), iter1, i, 1, 1, 1] ≺ [θ(iter2, σ
−1(i)), iter2, i, 1, 1, 1]

By using the definition of lexicographical order, the above constraint simplifies to the following.

∀ iter1, iter2, i : (1 ≤ iter1 < iter2 ≤ T ) ∧ (0 ≤ i < R)⇒ θ(iter1, σ
−1(i)) ≤ θ(iter2, σ

−1(i)) (7)

The dependences going from statement 1 to statement 2 provide a more complex example.

d12 = D2 ∪D4
= {[iter1, i]→ [iter2, i, p] | (1 ≤ iter1 ≤ iter2 ≤ T )

∧(0 ≤ i < R) ∧ (ia(i) ≤ p < ia(i + 1)) ∧ (i 6= ja(p))
∪ {[iter, i1]→ [iter, i2, p] | (1 ≤ iter ≤ T )

∧ (0 ≤ i1 < i2 < R) ∧ (ia(i2) ≤ p < ia(i2 + 1)) ∧ (i1 = ja(p))}
∪ {[iter1, i1]→ [iter2, i2, p] | (1 ≤ iter1 < iter2 ≤ T )

∧ (0 ≤ i1, i2 < R) ∧ (i1 6= i2) ∧ (ia(i2) ≤ p < ia(i2 + 1)) ∧ (i1 = ja(p))}

Applying M1 to the left-hand side of the dependence relations and M2 to the right-hand side results in the
following three constraints.

First:

∀ iter1, iter2, i : (1 ≤ iter1 < iter2 ≤ T ) ∧ (0 ≤ i < R)
∧(∃p : ia(i) ≤ p < ia(i + 1)) ∧ (i 6= ja(p))
⇒ [θ(iter1, σ

−1(i)), iter1, i, 1, 1, 1] ≺ [θ(iter2, σ
−1(i)), iter2, i, 2, p, 1]

By applying the definition of lexicographical order, the above simplifies to the following, which is subsumed
by the previously determined constraint (7).

∀ iter1, iter2, i : (1 ≤ iter1 < iter2 ≤ T ) ∧ (0 ≤ i < R)
∧(∃p : ia(i) ≤ p < ia(i + 1)) ∧ (i 6= ja(p))
⇒ θ(iter1, σ(i)−1) ≤ θ(iter2, σ(i)−1)
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Second:

∀ iter, i1, i2 : (1 ≤ iter ≤ T ) ∧ (0 ≤ i1 < i2 < R)
∧(∃p : ia(i2) ≤ p < ia(i2 + 1)) ∧ (i1 = ja(p))
⇒ [θ(iter, σ−1(i1)), iter, i1, 1, 1, 1] ≺ [θ(iter, σ−1(i2)), iter, i2, 2, p, 1]

By applying the definition of lexicographical order, the above simplifies to the following.

∀ iter, i1, i2 : (1 ≤ iter ≤ T ) ∧ (0 ≤ i1 < i2 < R)
∧(∃p : ia(i2) ≤ p < ia(i2 + 1)) ∧ (i1 = ja(p))
⇒ θ(iter, σ(i1)−1) ≤ θ(iter, σ(i2)−1)

(8)

Third:

∀ iter1, iter2, i1, i2 : (1 ≤ iter1 < iter2 ≤ T ) ∧ (0 ≤ i1, i2 < R) ∧ (i1 6= i2)
∧(∃p : ia(i2) ≤ p < ia(i2 + 1)) ∧ (i1 = ja(p))
⇒ [θ(iter1, σ

−1(i1)), iter1, i1, 1, 1, 1] ≺ [θ(iter2, σ
−1(i2)), iter2, i2, 2, p, 1]

By applying the definition of lexicographical order, the above simplifies to the following.

∀ iter1, iter2, i1, i2 : (1 ≤ iter1 < iter2 ≤ T ) ∧ (0 ≤ i1, i2 < R) ∧ (i1 6= i2)
∧(∃p : ia(i2) ≤ p < ia(i2 + 1)) ∧ (i1 = ja(p))
⇒ θ(iter1, σ(i1)−1) ≤ θ(iter2, σ(i2)−1)

(9)

By completing the process of applying the transformation mappings to the data dependences and simplifying
the resulting constraints, it is possible to generate the constraints which must be satisfied by the tiling
function θ and the reordering function σ.

Theorem 1 For a given ordering function σ such that i = σ(v) and tiling function θ with the schedule
function sched(tileID, iter) = {σ(v) | θ(iter, v) = tileID}, the sparse tiled Gauss-Seidel pseudocode for CSR
shown in figure 6 satisfies the Gauss-Seidel for CSR data dependences if the following constraints are met.

1. ∀ iter1, iter2, i : (1 ≤ iter1 < iter2 ≤ T ) ∧ (0 ≤ i < R)⇒ θ(iter1, σ
−1(i)) ≤ θ(iter2, σ

−1(i))

2. ∀ iter, i1, i2 : (1 ≤ iter ≤ T ) ∧ (0 ≤ i1 < i2 < R) ∧ (∃p : ia(i1) ≤ p < ia(i1 + 1) ∧ i2 = ja(p)) ⇒
θ(iter, σ−1(i1)) ≤ θ(iter, σ−1(i2))

3. ∀ iter, i1, i2 : (1 ≤ iter ≤ T ) ∧ (0 ≤ i1 < i2 < R) ∧ (∃p : ia(i2) ≤ p < ia(i2 + 1) ∧ i1 = ja(p)) ⇒
θ(iter, σ−1(i1)) ≤ θ(iter, σ−1(i2))

4. ∀ iter1, iter2, i1, i2 : (1 ≤ iter1 < iter2 ≤ T ) ∧ (0 ≤ i1 6= i2 < R) ∧ (∃p : ia(i1) ≤ p < ia(i1 + 1) ∧ i2 =
ja(p))⇒ θ(iter1, σ

−1(i1)) ≤ θ(iter2, σ
−1(i2))

5. ∀ iter1, iter2, i1, i2 : (1 ≤ iter1 < iter2 ≤ T ) ∧ (0 ≤ i1 6= i2 < R) ∧ (∃p : ia(i2) ≤ p < ia(i2 + 1) ∧ i1 =
ja(p))⇒ θ(iter1, σ

−1(i1)) ≤ θ(iter2, σ
−1(i2))

Proof : The constraints are generated by testing the legality of the mappings from Gauss-Seidel to sparse
tiled Gauss-Seidel. For example, the derivation of constraint 1 in the theorem is the same as that of (7),
constraint 3 follows from equation (8), and constraint 5 follows from equation (9).
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Intuitively, the first constraint in theorem 1 occurs because updates to a particular unknown must occur in
convergence iteration order. Constraints 2 and 3 occur because within a convergence iteration, unknowns
which share an edge in the matrix graph must be executed in the order provided by σ. Constraints 4
and 5 arise because for unknowns which share an edge in the matrix graph, the previous convergence
iteration’s update on a neighboring unknown must occur before the current convergence iteration of the
current unknown.

3 Generating the Tiling and Reordering Functions via Sparse Tiling

Sparse tiling techniques subdivide the iteration space of a Gauss-Seidel computation (such as the one in
Figure 2) to perform run-time data and iteration reordering. Recall from Section 1 that the Gauss-Seidel
computation can be visualized as shown in Figure 2. The algorithms which generate a new data order and
computation schedule at runtime manipulate the matrix graphs within the Gauss-Seidel computation. The
output of the run-time component of sparse tiling (inspector phase) is a data reordering function, σ, a tiling
function, θ, and a corresponding schedule function, sched.

Both sparse tiling techniques includes the following steps within the inspector phase at runtime.

• Partition the matrix graph to create a seed partitioning.

• Grow tiles from the cells of the seed partitioning to create a tiling function θ which assigns each
iteration point to a tile. The tile growth algorithm also generates constraints on the data reordering
function.

• Generate the reordering function σ.

• Remap the data using the reordering function σ.

• Reschedule by creating a schedule function, sched, based on the tiling function θ.

The sparse tiling inspector operates on the original matrix graph, G(V,E). As described in Section 1, for
each iteration v, there is a node in the matrix graph v ∈ V , and for each nonzero in the matrix, avw 6= 0 or
awv 6= 0, there is a directed edge <v,w>∈ E. When calculating the algorithmic complexity for the various
algorithms which are part of the inspector, we assume that the matrix graph is stored in the CSR sparse
matrix format. Therefore, accessing all edges <v, ∗>, with a particular node v as the first endpoint takes
O(|E|/|V |). Accessing all edges such that node v is the second endpoint, <∗, v> takes O(|E|).

The next sub-sections describe each step of the run-time process for full sparse tiling (previously referred to
as serial sparse tiling [21]) in terms of algorithmic complexity and provable characteristics of the resulting
σ and θ functions. The only necessary difference between full sparse tiling and cache blocking [4] is the
tile-growth algorithm. Characteristics of the resulting σ and θ functions are determined and then used in
section 3.6 to show that full sparse tiled Gauss-Seidel generates results equivalent to typical Gauss-Seidel
when the same data order σ is used by both.

3.1 Partition the Matrix Graph

Although optimal graph partitioning is an NP-Hard problem [6], there are many heuristics to get reasonable
graph partitions. The goal of graph partitioning is to divide the nodes of a graph into k roughly equal-sized
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cells, in a way that minimizes the number of edges whose two endpoints are in different cells. Currently, we
use the Metis package [12] to generate the seed partitioning function part. The partitioning algorithm in
Metis has a reported complexity of O(|E|) where |E| is the number of edges in the matrix graph. After the
partitioning all the nodes in the matrix graph v ∈ V have been assigned a seed partition, part(v).

3.2 Sparse Tile the Iteration Space

The matrix graph partitioning, generated in the Partition step, creates a seed partitioning from which tiles
can be grown. The seed partitioning designates the tiling at a particular convergence iteration, iters. In other
words at iters, where 1 ≤ iters ≤ T , the tiling function is set to the partition function, θ(iters, v) = part(v).

To determine the tiling at other convergence iterations full sparse tiling adds or deletes nodes from the
seed partition to allow atomic execution of tiles across convergence iterations without violating any data
dependences.

The FullSparseNaive GSCSR Algorithm, shown in figure 7, generates the tiling function θ, which assigns
iteration points to tiles. It also generates the relation NodeOrd, which specifies some constraints on the
reordering function σ. The first three instructions initialize the NodeOrd relation and all of the θ’s for the
convergence iteration iters. It then loops down through the convergence iterations that come before iters

setting the θ function for each iteration point <iter, v> to the same as the iteration point directly above it in
the iteration space. Finally, it visits the edges which have endpoints in two different partitions adjusting θ to
ensure that the data dependences are satisfied by the θ values. The process is repeated for the convergence
iterations between iters and T in the upward tile growth. Once neighboring nodes are put into two different
tiles at any iteration iter, there must be a constraint on their node order σ which we indicate by putting
<v, w> into the relation NodeOrd if for any iteration iter, θ(iter, v) < θ(iter, w).

An upper bound on the complexity of this algorithm is O(Tk|V ||E|), where T is the number of convergence
iterations, k is the number of tiles, |V | is the number of nodes in the matrix graph, and |E| is the number
of edges in the matrix graph. The k|V ||E| term is due to the while loops at lines 5 and 15. In the worst
case, the while loop will execute k|V | times. ∀v ∈ V , θ(iter, v) decreases monotonically and can take on at
most k values, and in the worst case only one θ(iter, v) would decrease each time through the while loop. In
practice, the algorithm runs much faster than this bound.

Figures 8 and 9 list post-conditions for the FullSparseNaive GSCSR algorithm. Next we give a proof
for each of the post-conditions.

Post-condition 2.1 ∀v ∈ V, θ(iters, v) is initialized

Satisfied by assignments in line 1.

Post-condition 2.2 ∀v, w ∈ V , <v, w> ∈ NodeOrd if and only if
θ(iters, v) < θ(iters, w) and (<v, w> ∈ E or <w, v> ∈ E)

Satisfied by assignment in line 2.

Post-condition 4.1 ∀v ∈ V , θ(iter, v) = θ(iter + 1, v)

12



Algorithm FullSparseNaive GSCSR(G(V,E),part(),T ,iters)

1: foreach vertex v ∈ V, θ(iters, v)← part(v)
2: NodeOrd← {<v, w> | θ(iters, v) < θ(iters, w) and (<v, w> ∈ E or <w, v> ∈ E)}

Downward tile growth
3: for iter = (iters − 1) downto 1
4: foreach vertex v ∈ V , θ(iter, v)← θ(iter + 1, v)
5: do while θ changes
6: foreach <v, w> ∈ NodeOrd
7: θ(iter, w)← min(θ(iter, w), θ(iter + 1, v))
8: θ(iter, v)← min(θ(iter, v), θ(iter, w))
9: end foreach
10: end do while
11: NodeOrd← NodeOrd

⋃
{<v, w> | θ(iter, v) < θ(iter, w) and (<v, w> ∈ E or <w, v> ∈ E)}

12: end for

Upward tile growth
13: for iter = (iters + 1) to T
14: foreach vertex v ∈ V , θ(iter, v)← θ(iter − 1, v)
15: do while θ changes
16: foreach <v, w> ∈ NodeOrd
17: θ(iter, v)← max(θ(iter, v), θ(iter − 1, w))
18: θ(iter, w)← max(θ(iter, w), θ(iter, v))
19: end foreach
20: end do while
21: NodeOrd← NodeOrd

⋃
{<v, w> | θ(iter, v) < θ(iter, w) and (<v, w> ∈ E or <w, v> ∈ E)}

22: end for

Figure 7: FullSparseNaive GSCSR Algorithm

Satisfied by assignment in line 4 and pre-condition 4.1. Pre-condition 4.1 is satisfied by post-condition 2.1
when iter = (iters − 1) in the loop starting at line 3. For all iter such that 1 ≤ iter < (iters − 1), it is
satisfied by the post-condition 4.1 from the previous iteration (iter + 1).

Post-condition 7.1 θ(iter, w) ≤ θ(iter + 1, w)

Post-condition 4.1 ensures that θ(iter, w) is initialized equal to θ(iter + 1, w). In line 7, θ(iter, w) can only
decrease in value thus post-condition 7.1 holds.

Post-condition 7.2 θ(iter, w) ≤ θ(iter + 1, v)

Satisfied by the assignment in line 7.
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Algorithm FullSparseNaive GSCSR(G(V,E),part(),T ,iters)

{ pre-condition [1.1] (1 ≤ iters ≤ T )}

1: foreach vertex v ∈ V, θ(iters, v)← part(v)
2: NodeOrd← {<v, w> | θ(iters, v) < θ(iters, w) and (<v, w> ∈ E or <w, v> ∈ E)}

{ post-condition [2.1] ∀v ∈ V, θ(iters, v) is initialized }
{ post-condition [2.2] ∀v, w ∈ V , <v, w>∈ NodeOrd if and only if

θ(iters, v) < θ(iters, w) and (<v, w> ∈ E or <w, v> ∈ E) }

Downward tile growth
3: for iter = (iters − 1) downto 1

{ pre-condition [4.1] ∀v ∈ V, θ(iter + 1, v) is initialized }
4: foreach vertex v ∈ V , θ(iter, v)← θ(iter + 1, v)

{ post-condition [4.1] ∀v ∈ V , θ(iter, v) = θ(iter + 1, v)}

5: do while θ changes
6: foreach <v, w> ∈ NodeOrd
7: θ(iter, w)← min(θ(iter, w), θ(iter + 1, v))

{ post-condition [7.1] θ(iter, w) ≤ θ(iter + 1, w)}
{ post-condition [7.2] θ(iter, w) ≤ θ(iter + 1, v)}

8: θ(iter, v)← min(θ(iter, v), θ(iter, w))
{ post-condition [8.1] θ(iter, v) ≤ θ(iter + 1, v)}
{ post-condition [8.2] θ(iter, v) ≤ θ(iter, w)}

9: end foreach
{ post-condition [9.1] ∀v ∈ V , θ(iter, v) ≤ θ(iter + 1, v)}
{ post-condition [9.2] if θ didn’t change then
∀ <v, w> ∈ NodeOrd, θ(iter, v) ≤ θ(iter, w) ≤ θ(iter + 1, v)}

10: end do while
{ post-condition [10.1] ∀ <v, w>∈ NodeOrd, θ(iter, v) ≤ θ(iter, w) ≤ θ(iter + 1, v)}
{ post-condition [10.2] ∀v, w ∈ V , if (<v, w> ∈ E or <w, v> ∈ E)

then θ(iter, v) ≤ θ(iter + 1, w)}

11: NodeOrd← NodeOrd
⋃

{<v, w> | θ(iter, v) < θ(iter, w) and (<v, w> ∈ E or <w, v> ∈ E)}

12: end for
{ post-condition [12.1] ∀iter : 1 ≤ iter ≤ (iters − 1) and ∀v ∈ V , θ(iter, v) ≤ θ(iter + 1, v)}
{ post-condition [12.2] ∀v, w ∈ V , <v, w>∈ NodeOrd if and only if

∃iter : 1 ≤ iter ≤ (iters − 1) such that θ(iter, v) < θ(iter, w)
and (<v, w> ∈ E or <w, v> ∈ E) }

{ post-condition [12.3] ∀iter : 1 ≤ iter ≤ (iters − 1) and ∀v, w ∈ V ,
if (<v, w> ∈ E or <w, v> ∈ E) then θ(iter, v) ≤ θ(iter + 1, w)}

{ post-condition [12.4] NodeOrd is acyclic }

Figure 8: FullSparseNaive GSCSR Algorithm with post-conditions, Part I
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Algorithm FullSparseNaive GSCSR cont...

Upward tile growth
13: for iter = (iters + 1) to T

{ pre-condition [14.1] ∀v ∈ V , θ(iter − 1, v) is initialized }
14: foreach vertex v ∈ V , θ(iter, v)← θ(iter − 1, v)

{ post-condition [14.1] ∀v ∈ V , θ(iter, v) = θ(iter − 1, v)}

15: do while θ changes
16: foreach <v, w> ∈ NodeOrd
17: θ(iter, v)← max(θ(iter, v), θ(iter − 1, w))

{ post-condition [17.1] θ(iter − 1, v) ≤ θ(iter, v)}
{ post-condition [17.2] θ(iter − 1, w) ≤ θ(iter, v)}

18: θ(iter, w)← max(θ(iter, w), θ(iter, v))
{ post-condition [18.1] θ(iter − 1, w) ≤ θ(iter, w)}
{ post-condition [18.2] θ(iter, v) ≤ θ(iter, w)}

19: end foreach
{ post-condition [19.1] ∀v ∈ V , θ(iter − 1, v) ≤ θ(iter, v)}
{ post-condition [19.2] if θ didn’t change then
∀ <v, w>∈ NodeOrd, θ(iter − 1, w) ≤ θ(iter, v) ≤ θ(iter, w)}

20: end do while
{ post-condition [20.1] ∀ <v, w>∈ NodeOrd, θ(iter − 1, w) ≤ θ(iter, v) ≤ θ(iter, w)}
{ post-condition [20.2] ∀v, w ∈ V , if (<v, w> ∈ E or <w, v> ∈ E)

then θ(iter − 1, v) ≤ θ(iter, w)}

21: NodeOrd← NodeOrd
⋃

{<v, w> | θ(iter, v) < θ(iter, w) and (<v, w> ∈ E or <w, v> ∈ E)}

22: end for
{ post-condition [22.1] ∀q : (iters + 1) ≤ q ≤ T and ∀v ∈ V , θ(q − 1, v) ≤ θ(q, v)}
{ post-condition [22.2] ∀q : (iters + 1) ≤ q ≤ T and ∀v, w ∈ V , if (<v, w> ∈ E or <w, v> ∈ E)

then θ(q − 1, v) ≤ θ(q, w)}

Figure 9: FullSparseNaive GSCSR Algorithm with post-conditions, Part II
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Post-condition 8.1 θ(iter, v) ≤ θ(iter + 1, v)

Post-condition 4.1 ensures that θ(iter, v) is initialized equal to θ(iter + 1, v). In line 8, θ(iter, v) can only
decrease in value thus post-condition 8.1 holds.

Post-condition 8.2 θ(iter, v) ≤ θ(iter, w)

Satisfied by the assignment in line 8.

Post-condition 9.1 ∀iter ∈ V , θ(iter, v) ≤ θ(iter + 1, v)

Satisfied by post-conditions 4.1, 7.1, and 8.1.

Post-condition 9.2 if θ didn’t change then ∀ <v, w>∈ NodeOrd, θ(iter, v) ≤ θ(iter, w) ≤ θ(iter + 1, v)

Follows immediately from post-conditions 7.2 and 8.2. Notice that it is important that θ not change during
the entire foreach loop for this post-condition to be true. For example, assume that < v1, v2 >∈ NodeOrd
and < v2, v3 >∈ NodeOrd with θ(iter + 1, v3) = 0, θ(iter, v1) = θ(iter + 1, v1) > 0, and θ(iter, v2) > 0.
If edge < v1, v2 > is visited first in the foreach loop, then it will still be the case that θ(iter, v1) > 0 and
θ(iter, v2) > 0. However, later in the foreach loop when <v2, v3 > is visited, θ(iter, v2) will be set equal to 0
due to line 8. It will then be the case that θ(iter, v1) > θ(iter, v2) even though <v1, v2 >∈ NodeOrd. This
will be remedied the next time through the foreach loop.

Post-condition 10.1 ∀ <v, w>∈ NodeOrd, θ(iter, v) ≤ θ(iter, w) ≤ θ(iter + 1, v)

The do while loop in lines 5 through 10 ends when θ no longer changes in the foreach loop starting at line
6. Therefore due to post-condition 9.2, when the do while loop completes post-condition 10.1 is satisfied.

Post-condition 10.2 ∀v, w ∈ V , if (<v, w> ∈ E or <w, v> ∈ E) then θ(iter, v) ≤ θ(iter + 1, w)

For all v, w ∈ V with iter = (iters − 1), the tiling function values θ(iter + 1, v) and θ(iter + 1, w) are set in
line 1. For all v, w ∈ V with iter such that 1 ≤ iter < (iters − 1), the tiling function values θ(iter + 1, v)
and θ(iter + 1, w) are set in the previous iteration of the for loop starting at line 3. The relationship
between θ(iter + 1, v) and θ(iter + 1, w) falls under two cases, either θ(iter + 1, v) ≤ θ(iter + 1, w) or
θ(iter + 1, v) > θ(iter + 1, w).

Case 1: If θ(iter+1, v) ≤ θ(iter+1, w) then due to post-condition 9.1 the following is true and post-condition
10.2 is satisfied by the second inequality.

θ(iter, v) ≤ θ(iter + 1, v) = θ(iter + 1, w) (10)

Case 2: If θ(iter + 1, v) > θ(iter + 1, w) then due to post-condition 2.2 when iter = (iters − 1) and line 11
when 1 ≤ iter < (iters − 1), the following is true.

<w, v>∈ NodeOrd (11)
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Using (11) and swapping the roles of v and w in post-condition 10.1, the following is true and post-condition
10.2 is satisfied.

θ(iter, w) ≤ θ(iter, v) ≤ θ(iter + 1, w) (12)

Post-condition 12.1 ∀iter : 1 ≤ iter ≤ (iters − 1) and ∀v ∈ V , θ(iter, v) ≤ θ(iter + 1, v)

Satisfied by the loop bounds of the for loop starting at line 3 and post-condition 9.1.

Post-condition 12.2 ∀v, w ∈ V , <v, w>∈ NodeOrd if and only if
∃iter : 1 ≤ iter ≤ iters such that θ(iter, v) < θ(iter, w) and (<v, w> ∈ E or <w, v> ∈ E)

Satisfied by post-condition 2.2 and the loop bounds of the for loop starting at line 3 combined with the
assignment in line 11.

Post-condition 12.3 ∀iter : 1 ≤ iter ≤ (iters − 1) and ∀v, w ∈ V , if (<v,w> ∈ E or <w, v > ∈ E) then
θ(iter, v) ≤ θ(iter + 1, w)

Satisfied by the loop bounds of the for loop starting at line 3 and post-condition 10.2.

Post-condition 12.4 NodeOrd is acyclic

Post-condition 2.2 quarantees that NodeOrd is initialized as acyclic. During the downward tile growth,
relations are added to NodeOrd at line 11. We show that each new relation added at line 11 does not cause
a cycle with the current set of relations in NodeOrd.

We assume the contrary and then derive a contradiction. Assume there is a path <w, x0 > ... <xn, v > in
NodeOrd such that upon adding <v, w> at line 11 a cycle would be created. Due to the first inequality in
post-condition 10.1 and the assignment at line 11, the following statement is true about the tiling function
θ values for the nodes in the path for the current value of iter at line 11.

θ(iter, w) ≤ θ(iter, x0) ≤ · · · ≤ θ(iter, xn) ≤ θ(iter, v) (13)

Due to line 11, if the relation <v, w> is being added to NodeOrd then the following is true.

θ(iter, v) < θ(iter, w) (14)

Combining (13) and (14) results in the contradiction that θ(iter, v) < θ(iter, v). Therefore, it is not possible
to add a relation <v, w> to NodeOrd which will cause a cycle.

Post-condition 14.1 ∀v ∈ V , θ(iter, v) = θ(iter − 1, v)

Satisfied by assignment in line 14 and pre-condition 14.1. Pre-condition 14.1 is satisfied by post-condition
2.1 when iter = (iters + 1) in the loop starting at line 13. For all iter such that (iters + 1) > iter ≤ T , it is
satisfied by the post-condition 14.1 from the previous iteration (iter − 1).
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Post-condition 17.1 θ(iter − 1, v) ≤ θ(iter, v)

Post-condition 14.1 ensures that θ(iter, v) is iniatilized equal to θ(iter − 1, v). In line 17, θ(iter, v) can only
increase in value thus postcondition 17.1 holds.

Post-condition 17.2 θ(iter − 1, w) ≤ θ(iter, v)

Satisfied by the assignment in line 17.

Post-condition 18.1 θ(iter − 1, w) ≤ θ(iter, w)

Post-condition 14.1 ensures that θ(iter, w) is initialized equal to θ(iter−1, w). In line 18, θ(iter, w) can only
increase in value thus postcondition 18.1 holds.

Post-condition 18.2 θ(iter, v) ≤ θ(iter, w)

Satisfied by the assignment in line 18.

Post-condition 19.1 ∀v ∈ V , θ(iter − 1, v) ≤ θ(iter, v)

Satisfied by post-conditions 14.1, 17.1, and 18.1.

Post-condition 19.2 if θ didn’t change then ∀ <v, w>∈ NodeOrd, θ(iter − 1, w) ≤ θ(iter, v) ≤ θ(iter, v)

Follows immediately from post-conditions 17.2 and 18.2. Notice that it is important that θ not change during
the entire foreach loop for this post-condition to be true. For example, assume that <w1, w2 >∈ NodeOrd
and < w2, w3 >∈ NodeOrd with θ(iter − 1, w1) = θ(iter, w1) = 4, θ(iter − 1, w2) = θ(iter, w2) < 4, and
θ(iter, w3) < 4. If edge <w2, w3 > is visited first in the foreach loop, then after lines 17 and 18 it will still
be the case that θ(iter, w2) < 4 and θ(iter, w3) < 4. However, later in the foreach loop when <w1, w2 > is
visited, θ(iter, w2) will be set equal to 4 due to line 18. It will then be the case that θ(iter, w2) > θ(iter, w3)
even though <w3, w3 >∈ NodeOrd. This will be remedied the next time through the foreach loop.

Post-condition 20.1 ∀ <v, w>∈ NodeOrd, θ(iter − 1, w) ≤ θ(iter, v) ≤ θ(iter, w)

The do while loop in lines 15 through 20 ends when θ no longer changes in the foreach loop starting at line 18.
Therefore due to post-condition 19.2, when the do while loop completes post-condition 20.1 is satisfied.

Post-condition 20.2 ∀v, w ∈ V , if (<v, w> ∈ E or <w, v> ∈ E) then θ(iter − 1, v) ≤ θ(iter, w)}
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For all v, w ∈ V with iter = (iters + 1), the tiling function values θ(iter − 1, v) and θ(iter − 1, w) were set
in line 1. For all v, w ∈ V with iter such that (iters + 1) < i ≤ T , the tiling function values θ(iter − 1, v)
and θ(iter − 1, w) are set in the previous iteration of the for loop starting at line 15. The relationship
between θ(iter − 1, v) and θ(iter − 1, w) falls under two cases, either θ(iter − 1, v) ≤ θ(iter − 1, w) or
θ(iter − 1, v) > θ(iter − 1, w).

Case 1: If θ(iter − 1, v) ≤ θ(iter − 1, w) then due to post-condition 19.1 the following is true and post-
condition 20.2 is satisfied.

θ(iter − 1, v) ≤ θ(iter − 1, w) ≤ θ(iter, v) (15)

Case 2: If θ(iter − 1, v) > θ(iter − 1, w) then due to post-conditions 12.2 when iter = (iters + 1) and line
11 if (iters + 1) < iter ≤ T , the following is true.

<w, v>∈ NodeOrd (16)

Using (16) and swapping the roles of v and w in post-condition 20.1, we find the following is true and
post-condition 20.2 is satisfied by the second inequality.

θ(iter − 1, v) ≤ θ(iter, w) ≤ θ(iter, v) (17)

Post-condition 22.1 ∀q : (iters + 1) ≤ q ≤ T and ∀v ∈ V , θ(q − 1, v) ≤ θ(q, v)

Satisfied by the loop bounds of the for loop starting at line 13 and post-condition 19.1.

Post-condition 22.2 ∀q : (iters + 1) ≤ q ≤ T and ∀ <v, w>∈ E, θ(q − 1, v) ≤ θ(q, w)

Satisfied by the loop bounds of the for loop starting at line 13 and post-condition 20.2.

The post-conditions for the FullSparseNaive GSCSR algorithm allow for the following lemmas, which
describe the conditions met by tiling function θ and the set of ordered pairs NodeOrd at the end of the
algorithm.

Lemma 1 Upon completion of the FullSparseNaive GSCSR algorithm, ∀iter : 1 ≤ iter ≤ (T − 1) and
∀v ∈ V , θ(iter, v) ≤ θ(iter + 1, v).

This condition states that all later convergence iterations performed on the same node v will be in the
same or later tile. It depends directly on post-conditions 12.1, and 22.1, which are post-conditions for the
downward tile growth and upward tile growth sections of the algorithm respectively. Between lines 12 and
the end of the algorithm, no assignments occur to θ(iter, v) with 1 ≤ iter ≤ iters and v ∈ V .

Notice that upon substitution of q = iter + 1 in post-condition 22.1 we get the following statement.

∀iter : (iters + 1) ≤ (iter + 1) ≤ T and ∀v ∈ V, θ((iter + 1)− 1, v) ≤ θ(iter + 1, v) (18)

Rewriting (18) we get the following.

∀iter : iters ≤ iter ≤ (T − 1) and ∀v ∈ V, θ(iter, v) ≤ θ(iter + 1, v) (19)
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By combining the domains of iter in post-condition 12.1 and (19) we get post-condition 1.

Lemma 2 Upon completion of the FullSparseNaive GSCSR algorithm, ∀v, w ∈ V , <v, w>∈ NodeOrd
if and only if ∃iter : 1 ≤ iter ≤ T such that θ(iter, v) < θ(iter, w) and (<v, w> ∈ E or <w, v> ∈ E).

This condition states that for every ordered pair < v,w > in the relation NodeOrd, the tiling function for
these nodes at one or more of the convergence iterations satisfies a less than relationship and vice versa.
Satisfied by post-condition 12.2 and the loop bounds of the for loop starting at line 13 combined with the
assignment in line 21.

Lemma 3 Upon completion of the FullSparseNaive GSCSR algorithm, ∀iter : 1 ≤ iter ≤ (T − 1) and
∀v, w ∈ V , if (<v, w> ∈ E or <w, v> ∈ E) then θ(iter, v) ≤ θ(iter + 1, w).

This condition states that all later convergence iterations performed on the neighbors of any node v will be
in the same or later tile. It depends directly on post-conditions 12.3 and 22.2 which are post-conditions for
the downward tile growth and upward tile growth sections of the algorithm respectively. Between line 12
and the end of the algorithm, no assignments occur to θ(iter, v) with 1 ≤ iter ≤ iters and v ∈ V .

Notice that upon substitution of q = iter + 1 in post-condition 22.2 we get the following statement.

∀iter : (iters + 1) ≤ (iter + 1) ≤ T and ∀ <v, w>∈ E, θ((iter + 1)− 1, v) ≤ θ(iter + 1, w) (20)

Rewriting (20) we get the following.

∀iter : iters ≤ iter ≤ (T − 1) and ∀ <v, w>∈ E, θ(iter, v) ≤ θ(iter + 1, w) (21)

By combining the domains of iter in post-condition 12.3 and (21) post-condition 3 is satisfied.

Lemma 4 Upon completion of the FullSparseNaive GSCSR algorithm, NodeOrd is acyclic.

Post-condition 12.4 guarantees that NodeOrd is acyclic before the beginning of the for loop which starts at
line 13. During the upwards tile growth, relations are added to NodeOrd at line 21. We show that each new
relation added at line 21 does not cause a cycle with the current set of relations in NodeOrd.

We assume the contrary and then derive a contradiction. Assume there is a path < w, x0 > ... < xn, v >
in the NodeOrd such that upon adding < v, w > at line 21 a cycle would be created. Due to the second
inequality in post-condition 20.1 and the assignment at line 21, the following statement is true about the
tiling function θ values for the nodes in the path for the current value of iter at line 21.

θ(iter, w) ≤ θ(iter, x0) ≤ · · · ≤ θ(iter, xn) ≤ θ(iter, v) (22)

Due to line 21, if the relation <v, w> is being added to NodeOrd then the following is true.

θ(iter, v) < θ(iter, w) (23)

Combining (22) and (23) result in the contradiction that θ(iter, v) < θ(iter, v). Therefore, it is not possible
to add a relation <v, w> to NodeOrd which will cause a cycle.
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3.3 Generate the Reordering Function

The first step of a typical Gauss-Seidel computation is to assign an arbitrary order σ to the nodes. This
affects the result of the computation because at each convergence iteration each unknown computation will
use the most recent values of the neighboring nodes in the matrix graph. Within a convergence iteration
unknowns are updated based on their order.

We have two goals when ordering the unknowns: satisfy the constraints specified in the NodeOrd relation
and increase intra-iteration locality. First and foremost, the reordering function must satisfy the NodeOrd
relation for correctness. Second, we want to give consecutive numbers to unknowns that at any iteration are
updated by the same tile, because the data is stored in memory based on its order. Therefore we want the
data associated with nodes executed by the same tile to be close in memory and consequently have better
intra-iteration locality as well as inter-iteration locality.

Both of the above goals are satisfied when the nodes in the matrix graph (and associated unknowns) are
ordered based on the lexicographical order of their tile vectors. The tile vector is a vector of length T which
indicates the tile function values for a given node v at each convergence iteration, < θ(1, v), ...θ(T, v) >.
Our current implementation uses quicksort to sort the nodes lexicographically according to their tile vector.
Since each comparison between tile vectors requires O(T ) time, the complexity of quicksort in this instance
is O(T |V |lg|V |). A radix sort with complexity O(T (|k| + |V |)) is also possible. Creating the reordering
function σ by sorting the nodes based on their tile vectors results in the following property.

Lemma 5 After constructing an ordering on the nodes in the matrix graph based on the lexicographical
ordering of their tile vectors, if <v, w>∈ NodeOrd then σ(v) < σ(w)

Proof:

If < v,w >∈ NodeOrd then due to Lemma 2 ∃iter such that θ(iter, v) < θ(iter, w) and 6 ∃iter such that
θ(iter, w) < θ(iter, v). Therefore, the tile vector < θ(1, v), · · · , θ(T, v) > lexicographically precedes the tile
vector < θ(1, w), · · · , θ(T,w) >. Since σ is created with a lexicographical sort of the tile vectors, it follows
that σ(v) < σ(w).

3.4 Reorder the Data

The σ function generated by the CreateSigma algorithm is used to remap the data from the original
unknown array ~u to a new vector ~u′ such that u′σ(v) = uv. Also the the rows and columns of the sparse
matrix are remapped such that A′

σ(v)σ(w) = Avw. The complexity of the data remap is O(|V |+ |E|).

3.5 Create Schedule

To generate the schedule function sched such that sched(tileID, iter) = {σ(v) | θ(iter, v) = tileID}, it is
necessary to traverse all the iteration points in Gauss-Seidel without actually doing the computation. The
complexity for generating the schedule function is O(T |V |).
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3.6 Proof of Correctness

By using Lemmas 1 through 5, which describe the characteristics of the tiling function θ and the reordering
function σ generated by the full sparse tiling algorithms, we are able to prove that sparse tiled Gauss-Seidel
in Figure 6 generate bit-equivalent results to those generated by Gauss-Seidel for CSR in Figure 5 when both
use σ for their initial data ordering.

Theorem 2 Let G(V,E) be the directed matrix graph for a square sparse matrix A. For each row v in the
matrix, there is a corresponding node in the graph, v ∈ V . For each element in the matrix, Avw, there is
an edge < v, w >∈ E. The reordered unknowns ~u′, right-hand side ~f ′ and sparse matrix A′, are such that
i = σ(v), A′

σ(v)σ(w) = Avw, u′σ(v) = uv, and f ′σ(v) = fv. A′ is represented with the arrays ia, ja, and a such
that for each A′

σ(v)σ(w) there exists p such that ia[σ(v)] ≤ p < ia[σ(v) + 1] and σ(w) = ja[p].

The θ and σ functions, generated by the full sparse tiling inspector using FullSparseNaive GSCSR as
the tile growth algorithm, satisfy the constraints in Theorem 1.

Proof :

First, when using the facts that i = σ(v) and for each A′
σ(v)σ(w) there exists an edge < v,w >∈ E in the

original sparse matrix graph for A, the constraints from Theorem 1 can be rewritten as follows:

1. ∀ iter1, iter2, v : (1 ≤ iter1 < iter2 ≤ T ) ∧ (0 ≤ σ(v) < R)⇒ θ(iter1, v) ≤ θ(iter2, v)

2. ∀ iter, v, w : (1 ≤ iter ≤ T ) ∧ (0 ≤ σ(v) < σ(w) < R)∧ <v, w>∈ E ⇒ θ(iter, v) ≤ θ(iter, w)

3. ∀ iter, v, w : (1 ≤ iter ≤ T ) ∧ (0 ≤ σ(v) < σ(w) < R)∧ <w, v>∈ E ⇒ θ(iter1, v) ≤ θ(iter, w)

4. ∀ iter1, iter2, v, w : (1 ≤ iter1 < iter2 ≤ T ) ∧ (0 ≤ σ(v) 6= σ(w) < R)∧ < v,w >∈ E ⇒ θ(iter1, v) ≤
θ(iter2, w)

5. ∀ iter1, iter2, v, w : (1 ≤ iter1 < iter2 ≤ T ) ∧ (0 ≤ σ(v) 6= σ(w) < R)∧ < w, v >∈ E ⇒ θ(iter1, v) ≤
θ(iter2, w)

Condition 1: Satisfied by transitive closure on Lemma 1.

Condition 2: For condition 2, we assume the contrary and derive a contradiction. Assume the following:

∀ iter, v, w : (1 ≤ iter ≤ T ) ∧ (0 ≤ σ(v) < σ(w) < R)∧ <v, w>∈ E ∧ θ(iter, v) > θ(iter, w) (24)

Using Lemma 2 and the assumption from (24) that θ(iter, v) > θ(iter, w), it is true that <w, v>∈ NodeOrd.
Therefore according to Lemma 5, σ(w) < σ(v) which contradicts (24).

Condition 3: Can be shown with the same proof that was used for Condition 2.

22



Condition 4: Satisfied by transitive closure on Lemma 3.

Condition 5: Satisfied by transitive closure on Lemma 3.

4 Full Sparse Tiling Efficiency Issues

The Partition, Grow Tiles, Generate Sigma, Reorder, and Reschedule steps account for the run-
time overhead of sparse tiling. Since all of these steps occur at runtime, their efficiency is important. The
tile growth algorithm FullSparseNaive GSCSR has complexity O(Tk|V ||E|), where T is the number of
convergence iterations, k is the number of tiles, |V | is the number of nodes in the matrix graph, and |E| is
the number of edges in the matrix graph. Figure 10 shows the tile growth algorithm FullSparseWork-
Set GSCSR with complexity O(T 2k|E|). Since T is typically much less than |V | this algorithm has better
worst-case complexity.

Consider only the downward tile growth phase (the argument for the upward tile growth is similar). In
the FullSparseNaive GSCSR algorithm the while loop at line 5 is necessary because a specific θ(iter, v)
could change multiple times. Such a change occurs if a relation < v,w > is in NodeOrd and θ(iter, w)
changes due to a relation <w, z >∈ NodeOrd which is visited later than <v,w > in the foreach loop. The
FullSparseWorkSet GSCSR algorithm avoids the need for the while loop by incorporating two changes.
First FullSparseWorkSet GSCSR has two loops, at lines 7 and 11, over the relations in NodeOrd. The
first loop makes sure that if node v comes before node w in the NodeOrd relation, that the iteration point
< iter, w > must be in the same or an earlier tile than the iteration point < iter + 1, v >. Since the tiling
function values for all nodes v ∈ V won’t change at the (iter + 1) iteration, it is only necessary to visit
each < v, w >∈ NodeOrd once to get θ(iter, w) ≤ θ(iter + 1, v). The second loop through the relations
in NodeOrd makes sure that if < v, w >∈ NodeOrd then iteration point < iter, v > is put into the same
or earlier tile as iteration point < iter, w >. Since we visit the NodeOrd relations < v,w > in order of
the current tiling function value for w, θ(iter, w), at any node v there will not be a path in NodeOrd,
< v,w >, < w, x1 >, ..., < xn−1, xn > such that θ(iter, xn) < θ(iter, w). Therefore, it is only necessary to
visit each < v, w >∈ NodeOrd once in the second loop as well. Upon elimination of the while loop, the
complexity of the algorithm changes from O(Tk|V ||E|) to O(T 2k|E|), where the extra T term is due to the
UpdateTheta algorithm and the k term is due to the loop which starts at line 11.

Another costly part of the FullSparseNaive GSCSR algorithm occurs at lines 11 and 21, where each
edge <v, w> in the matrix graph must be checked to determine if <v, w> belongs in NodeOrd. If <v, w>
is not in NodeOrd it must be the case that θ(iter +1, v) ≥ θ(iter +1, w). Thus, it is only necessary to check
an edge < v,w > if either θ(iter, v) has decreased during downward tile growth or θ(iter, w) has increased
during forward tile growth. In FullSparseWorkSet GSCSR, ThetaChangedWorkSet keeps track of all
nodes v whose θ(iter, v) value has changed. The nodes in the ThetaChangedWorkSet are then used to
determine which edges <v,w>∈ E must be checked for candidacy in NodeOrd. Since the upper bound on
the number of edges checked in lines 22 and 42 is |E|, the worst-case complexity doesn’t improve due to this
change.

To show that the FullSparseWorkSet GSCSR algorithm also satisfies the constraints specified in The-
orem 1, it is only necessary to show that FullSparseWorkSet GSCSR satisfies the same constraints as
FullSparseNaive GSCSR which were where shown in Lemmas 1-4.

Lemma 6 Upon completion of the FullSparseWorkSet GSCSR algorithm, ∀iter : 1 ≤ iter ≤ (T − 1)
and ∀v ∈ V , θ(iter, v) ≤ θ(iter + 1, v).
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All the tiling function values θ for a particular node are initialized in line 1 of the FullSparseWork-
Set GSCSR algorithm to the same value. During backward tile growth, the θ values for a node only change
at lines 9 and 17 and can only decrease. During forward tile growth, the θ values for a node only change at
lines 29 and 37 and can only increase.

Lemma 7 Upon completion of the FullSparseWorkSet GSCSR algorithm, ∀v, w ∈ V , < v, w >∈
NodeOrd if and only if ∃iter : 1 ≤ iter ≤ T such that θ(iter, v) < θ(iter, w) and (< v, w > ∈ E or
<w, v> ∈ E).

The statement ∀v, w ∈ V , if <v,w>∈ NodeOrd then ∃iter : 1 ≤ iter ≤ T such that θ(iter, v) < θ(iter, w),
is satisfied by the constraints on edges added to the NodeOrd set in lines 3, 22 and 42.

The other direction of the equivalence is as follows.

∀v, w ∈ V, if ∃iter : 1 ≤ iter ≤ T such that θ(iter, v) < θ(iter, w) and (<v, w> ∈ E or <w, v> ∈ E)
then <v, w>∈ NodeOrd

First we show that after each iteration of backward tile growth if θ(iter, v) < θ(iter, w) and <v, w> ∈ Esym

then <v, w> is put into the NodeOrd set.

∀ <v, w> ∈ Esym, 1 ≤ iter ≤ iters if θ(iter, v) < θ(iter, w) then <v, w>∈ NodeOrd (25)

Proposition (25) is true for iter = iters due to line 3 in the algorithm. Assume the following is true.

∀ <x, y> ∈ Esym, 1 ≤ iter < iters, if θ(iter + 1, x) < θ(iter + 1, y) then <x, y>∈ NodeOrd (26)

The following is equivalent to statement (26).

∀ <x, y> ∈ Esym, 1 ≤ iter < iters, if <x, y>/∈ NodeOrd then θ(iter + 1, x) ≥ θ(iter + 1, y) (27)

Due to line 1 in the algorithm and the calls to UpdateTheta, at the start of the loop in lines 5-23 if
θ(iter + 1, x) ≥ θ(iter + 1, y) then θ(iter, x) ≥ θ(iter, y). The only way for the inequality to change to
θ(iter, x) < θ(iter, y) would be if θ(iter, x) is reduced at lines 9 or 17. If that occurs then x is put in the
set ThetaChangedWorkSet. Due to line 22, if x ∈ ThetaChangedWorkSet and θ(iter, x) < θ(iter, y) and
< x, y >∈ Esym, then < x, y > is put into the relation NodeOrd. Therefore (25) is true for iter such that
1 ≤ iter < iters.

A similar argument may be made for forward tile growth using the following assumption.

∀ <x, y> ∈ Esym, iters < iter ≤ T, if θ(iter − 1, x) < θ(iter − 1, y) then <x, y>∈ NodeOrd (28)

Lemma 8 Upon completion of the FullSparseWorkSet GSCSR algorithm, ∀iter : 1 ≤ iter ≤ (T − 1)
and ∀v, w ∈ V , if (<v, w> ∈ E or <w, v> ∈ E) then θ(iter, v) ≤ θ(iter + 1, w).

The proof is similar to the one given in Lemma 3. It depends on the following post-conditions after line 16
and line 35 in the FullSparseWorkSet GSCSR algorithm.
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∀v, w ∈ V, if <v, w> ∈ Esym then θ(iter, v) ≤ θ(iter + 1, w)} (29)
∀v, w ∈ V, if <v, w> ∈ Esym then θ(iter − 1, v) ≤ θ(iter, w) (30)

Proof for (29):

This proof is similar in form to that of Post-condition 10.2 from the FullSparseNaive GSCSR algorithm.
If θ(iter +1, v) ≤ θ(iter +1, w), due to lemma 6, θ(iter) < θ(iter +1, w). For the case where θ(iter +1, v) >
θ(iter + 1, w) due to lemma 7, it is true that <w, v>∈ NodeOrd. Switching places with v and w at line 7,
it will be the case that in line 9 there will be an update such that θ(iter, v) < θ(iter + 1, w).

Proof for (30):

This proof is similar in form to that of Post-condition 20.2 from the FullSparseNaive GSCSR algorithm.
If θ(iter − 1, v) ≤ θ(iter − 1, w) then due to lemma 6, θ(iter − 1, v) ≤ θ(iter, w). For the case where
θ(iter − 1, v) > θ(iter − 1, w) due to lemma 7, it is true that <w, v >∈ NodeOrd. Switching places with v
and w at line 27, it will be the case that in line 29 there will be an update such that θ(iter−1, v) ≤ θ(iter, w).

Lemma 9 Upon completion of the FullSparseWorkSet GSCSR algorithm, NodeOrd is acyclic.

The proof is similar to that of Post-condition 12.4 and Lemma 4. Essentially NodeOrd is initialized as acyclic,
and at lines 22 and 42 in the FullSparseWorkSet GSCSR algorithm relation <v,w> is only added to
NodeOrd when θ(iter, v) < θ(iter, w) and < v,w >∈ Esym. The loops starting at lines 7, 11, 27, and 31
make sure that if ∃iter1 such that θ(iter1, v) < θ(iter1, w), then ∀iter2 6= iter1 : θ(iter2, v) ≤ θ(iter2, w).
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Algorithm FullSparseWorkSet GSCSR(G(V,E),part(),T ,iters)

1: ∀v ∈ V and 1 ≤ iter ≤ T, θ(iter, v)← part(v)
2: Gsym(Vsym, Esym) = MakeSymmetricGraph(G(V,E))
3: NodeOrd← {<v, w> | θ(iters, v) < θ(iters, w) and <v, w> ∈ Esym}

Downwards tile growth
4: ∀ 0 ≤ t < numtile, TileWorkSett ← ∅
5: for iter = iters − 1 downto 1
6: ThetaChangedWorkSet← ∅
7: foreach <v, w> ∈ NodeOrd
8: TileWorkSetθ(iter,w) ← TileWorkSetθ(iter,w) ∪ {w}
9: if θ(iter, w) > θ(iter + 1, v) then UpdateTheta(1, iter, w, θ(iter + 1, v))
10: end foreach
11: for t = 0 to (numtile− 1)
12: toCheck ← TileWorkSett
13: while (toCheck 6= ∅)
14: tempSet← toCheck; toCheck ← ∅
15: foreach w ∈ tempSet; foreach <v, w>∈ NodeOrd
16: if θ(iter, v) > θ(iter, w) then
17: UpdateTheta(1, iter, v, θ(iter, w))
18: toCheck ← toCheck ∪ {v}
19: end foreach; end foreach
20: end while
21: end for
22: NodeOrd← NodeOrd ∪ {<v, w> | θ(iter, v) < θ(iter, w)

and v ∈ ThetaChangedWorkSet and <v, w>∈ Esym }
23: end for

Upwards tile growth
24: ∀ 0 ≤ t < numtile, TileWorkSett ← ∅
25: for iter = iters + 1 to T
26: ThetaChangedWorkSet← ∅
27: foreach <v, w> ∈ NodeOrd
28: TileWorkSetθ(iter,v) ← TileWorkSetθ(iter,v) ∪ {v}
29: if θ(iter, v) < θ(iter − 1, w) then UpdateTheta(iter, T, v, θ(iter − 1, w))
30: end foreach
31: for t = (numtile− 1) downto 0
32: toCheck ← TileWorkSett
33: while (toCheck 6= ∅)
34: tempSet← toCheck; toCheck ← ∅
35: foreach w ∈ tempSet; foreach <v, w>∈ NodeOrd
36: if θ(iter, w) < θ(iter, v) then
37: UpdateTheta(iter, T, w, θ(iter, v))
38: toCheck ← toCheck ∪ {w}
39: end foreach; end foreach
40: end while
41: end for
42: NodeOrd← NodeOrd ∪ {<v, w> | θ(iter, v) < θ(iter, w)

and w ∈ ThetaChangedWorkSet and <v, w>∈ Esym }
43: end for

Figure 10: FullSparseWorkSet GSCSR Algorithm
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Algorithm MakeSymmetricGraph(G(V,E))

1: Vsym = ∅ and Esym = ∅
2: ∀v ∈ V , Vsym = Vsym ∪ {v}
3: foreach <v, w> ∈ E, Esym = Esym ∪ {<v, w>} ∪ {<w, v>}
4: return Gsym(Vsym, Esym)

Figure 11: MakeSymmetricGraph Algorithm

Algorithm UpdateTheta(start,end,x,newval)

1: oldval← θ(start, x)
2: TileWorkSetoldval ← TileWorkSetoldval − {x}
3: TileWorkSetnewval ← TileWorkSetnewval ∪ {x}
4: ThetaChangedWorkSet← ThetaChangedWorkSet ∪ {x}
5: ∀ start ≤ q ≤ end, θ(q, x)← newval

Figure 12: UpdateTheta Algorithm
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5 Related Work

Related work may be categorized by whether it deals with regular or irregular meshes and whether it attempts
to improve intra-iteration locality and/or inter-iteration locality. Another important distinction is between
code transformations which have been automated in a compiler and those which are programming techniques
which require some domain-specific knowledge.

Traditional tiling [25, 11, 5, 24, 23, 2, 15] may be applied to any perfect loop nest which traverses the
unknowns associated with a regular mesh. This is because with regular grids the sparse matrix nonzeros are
stored in 2D or 3D arrays and therefore the memory references and loop boundaries are affine. With the
enabling transformation skewing, tiling is applicable to Gauss-Seidel and SOR over a regular mesh. when
the nonzeros in the sparse matrix are stored 2D and 3D arrays. Although the code may be transformed to
execute iteration points in a tile-by-tile fashion, the unknowns cannot be reordered for the Gauss-Seidel and
SOR methods with a compile-time technique because currently there is no mechanism for identifying the
domain specific information involved in reordering the unknown vector.

For Jacobi over a regular mesh, tiling techniques developed for imperfectly nested loops may be used [20, 1].
Another issue involved in tiling computations on regular meshes is how to determine the tiling and array
padding parameters [18]. If other compiler transformations, such as skewing, function in-lining and converting
while loops to for loops, are used then it is possible to apply tiling techniques for imperfectly nested loops
to stationary iterative methods to achieve inter-iteration locality.

There has also been work on compiler generated inspectors/executors for improving intra-iteration locality
[17, 3, 8, 16]. These papers describe how a compiler may analyze non-affine array references in a loop and
generate the inspectors/executors for performing run-time data and iteration reordering. These techniques
can be applied to the inner loops of Jacobi implemented for sparse matrix formats, but not to Gauss-Seidel
or SOR due to the intra-iteration data dependences.

Im and Yelick [9, 10] use a code generator called SPARSITY to create sparse matrix-vector multiply code
with better spatial and temporal locality when addressing the arrays for the ~x and ~b vectors in the system
A~x = ~b.

Increasing inter-iteration locality through programming techniques for iterative computations on regular
meshes is explored by [4], [19], and [7].

The only other technique to our knowledge which handles inter-iteration locality for irregular meshes is
unstructured cache blocking by Douglas et al. [4]. Cache blocking and full sparse tiling are the programming
techniques which this paper refers to as sparse tiling techniques. The cache blocking results in [4] were
generated within the context of a Multigrid algorithm using Gauss-Seidel. Within this context the authors
are able to assume that the sparse matrices involved are symmetric and multiple rows in the sparse matrix
will derive their structure from one node in an irregular mesh. Our work compares full sparse tiling and
cache blocking in terms of sparse tiled Gauss-Seidel performance. Also, we look at overhead without the
assumption of sparse matrix symmetry and structure derived from a mesh. Although these techniques differ
in how the tiles are grown, the serial performance of Gauss-Seidel after applying either of these techniques is
similar. Finally, the axiomatic approach we use to prove the correctness of the full sparse tiling tile growth
algorithm could also be used to prove the correctness of the cache blocking tile growth algorithm.
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6 Conclusion

We present an algorithm for generating a sparse tiling for Gauss-Seidel. We also give the full proof showing
that a serial execution of sparse tiled Gauss-Seidel is bit-equivalent to standard Gauss-Seidel when both
computations start with the same data ordering. Finally, we present another version of the full sparse tile
growth algorithm which has reduced worst-case complexity.
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